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A method is proposed for calculating the flow of a gas in a narrow planar channel of finite length. The 

gas is injected through the channel walls and effuses into the surrounding medium at a specified 

pressure. The calculations are carried out in the Prandtl approximation. A special feature of the 

method being proposed is the possibility of determining the flow characteristics for various values of 

the characteristic Mach number on the basis of the results of a single calculation carried out at a fiied 

Reynolds number. The procedure for taking account of the ellipticity of the problem being considered 

is considerably simplified. 

FLOWS induced by injecting a gas through the walls of channels of finite length have been 
modelled (see [l, 21, for example) using certain considerable simplifications. The flow in a 
closed planar channel, when there is evaporation from and condensation on one of its walls 
and a recirculation zone, have been investigated in [3] by solving the Navier-Stokes equations. 

1. A planar flow in a channel of length 21* and width 2h* is considered. The flow is induced 
by injecting a gas through the permeable walls at a constant flow rate density J* and gas 
temperature c. The gas effuses through the open ends of the channel into the surrounding 
space in which the pressure p: is specified (dimensional quantities are denoted by an 
asterisk). The main interest lies in finding the pressure distribution along the channel as a 
function of the controlling parameters of the problem, I*, h*, J*, p: and c. 

A rectangular system of coordinates with the origin located in the middle of one wall (the 
lower one) of the channel, with the x*-axis directed along the channel and the y-axis 
perpendicular to its walls, is introduced for the numerical solution of the problem. When the 
condition h* /I*-@1 is satisfied, the flow in the channel may be calculated in the Prandtl 
approximation [4]. 

If the controlling parameters of the problem such as the half length of the channel, I*, and 
the pressure of the surrounding medium &, are employed as characteristic values to represent 
the equations in dimensionless form, then the characteristic Mach number, M, = (Z?* T,* /?)I” 
J * I* l(p,* h*) , where Rz and y are the gas constant and the adiabatic index, appears in the 
momentum and energy equations for the pressure-gradient terms. 

Moreover, to solve the parabolic Prandtl equations, it is necessary to specify initial 
conditions at the centre of the channel x = 0. These can be obtained from the solution of a 
boundary-value problem for the system of ordinary differential equations which are obtained 
when the Prandtl equations are expanded in the neighbourhood of x = 0. Previously unknown 
values of the pressure at the centre of the channel and its second derivative with respect to x 
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enter into this system of equations. The second derivative with respect to x can be determined, 
as is shown below, by satisfying one of the two boundary conditions for the vertical velocity. In 
order to determine the value of the pressure at x = 0, an algorithm is required which ensures 
that the effect of the external pressure fl, on the pressure in the channel, under “subcritical” 
conditions of escape from it, is taken into account. For example, the pressure at the centre of 
the channel can be determined by some iterative method by specifying its value, carrying out a 
calculation up to the outlet cross-section of the channel and verifying the condition that the 
values of the pressure in the outlet cross-section and pe* are identical under “subcritical” 
conditions. Under “supercritical” outflow conditions, the external pressure has no effect on the 
flow in the channel and, in this case, it is necessary to check that the “critical” conditions are 
satisfied in the outlet cross-section. What is meant by the term “critical” ~nditions in this 
paper will be explained later. 

The solution of the problem under consideration is considerably simplified if, in writing out 
the equations in dimensionless form, the pressure at the centre of the channel, pz, which will 
be determined after solving a boundary-value problem, is used as the characteristic value of 
the pressure. In this case, as will be shown below, it is much simpler to take account of the 
effect of the ambient pressure under “subcritical” conditions, and the pressure distribution 
under “supercritical” conditions is determined just as simply. 

On representing the product of the density of the gas by the vertical velocity in the form 
Q * u* = J *V, where V is an unknown function and choosing the quantity Q,,* = p. * /(R * T,*) as 
the characteristic value of the density, using the equation of cont~~ty we obtain an expression 
for the characteristic value of the lon~tudin~ flow velocity %* = J * L* R * G */(PO * h*). Here 
L* is an effective length which is of the order of the half length of the channel E* and is 
introduced in such a manner that the equality p0 * /(p,, * r.$*“) = 1 is satisfied. The expression 

(1.1) 

follows from this. 
The characteristic length t* was introduced with the aim of eliminating the Mach number 

from the equations. In dimensionless coordinates x =x*/L* and y=y*/h*, the system of 
Prandtl equations with the corres~~~g boundary con~tio~ has the form 

(1.2) 

y=l: 2?$+0 (1.4) 

Here c,* is the heat capacity of the gas and &* and r~$’ are the coefficient of viscosity and the 
thermal conductivity at a temperature T0 *. In writing out Eq. (1.2), the equation of state of an 
ideal gas was used. The boundary conditions (1.4) are symmetry conditions which hold when 
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the gas is injected through both walls of the channel at the same intensity. The last condition in 
(1.3) is used to determine the pressure gradient dpldr at each specified cross-section of the 
channel. 

The initial conditions for the parabolic equations (1.2) are found from the solution of the 
boundary-value problem obtained by expanding the required functions in the neighbourhood 
of x=0 

u=xU(y)+..., V=VCy)+..., T=T(y)+..., dpldx=xP+... (1.9 

As a result of the substitution of (1.5) into (1.2)-(1.4), we obtain the following boundary- 
value problem 

(1.6) 
y = 0: u = 0, T=l, V=l; y=l: U’=T’=O 

Differentiation with respect to y is indicated by a prime. 
There are five boundary conditions for the fourth-order systems of Eqs (1.6) in the unknown 

functions U and T. One of them, namely, V(O)=l, is used to determine the quantity 
P = d’p(O)ldx’ occurring in (1.6) which is found by the secant method during the process of the 
iterative solution of the boundary-value problem (1.6). There are no other undetermined 
parameters in this problem. If the pressure is referred to pa*, another unknown quantity p(O), 
apart from P, occurs in the equations, analogous to (1.6). Since the number of boundary 
conditions is the same here, it is necessary to use the matching conditions in the outlet cross- 
section, about which we have spoken above, to determine p(0). 

When Pr=const the values of the parameter P are solely dependent on the Reynolds 
number. This dependence of the quantity -P on Re when Pr = 1 is shown in Fig. 1. 

The profiles U(y), V(y) and T(y) and the quantity P, obtained from the solution of problem 
(1.6), taking account of expansions (1.5), are used as the initial conditions in solving problem 
(1.2)-(1.4). The pressure in the Channel p(x) is determined by integration of the gradient dpldx 
with respect to x and the initial value in the integration p(O) = 1. 

2. During the course of the solution of the boundary-value problem (1.2)-(1.4), which is 
carried out by a numerical method of second order of accuracy with respect to both variables 
[S], the mean velocity coefficient (h) is found in each specified cross-section X. 

The following averaging procedure [6] is used: at each point of the difference rid with 
respect to y in the cross-section under consideration, the local Mach number M = U/ $ ($Q, the 
velocity coefficient X = M((y + 1)[2 + (7 - l)M’]}*” and the stagnation temperature I; = T/T(~), 
where T(A) = 1- h2(y - l)/(h + l), were determined using the calculated velocity profile u (x, y), 
and the temperature profile T(x, y). 

Fff.1. 
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The mean stagnation temperature is deter~n~ from the condition of ~onse~ation of the 
flow energy during averaging 

The mean value of the velocity of sound is then calculated 

The condition of elevation of momentum during averaging serves to determine the mean 
velocity coefficient 

where Q* is the flow rate in the bus-section of the channel under co~ideration. 
By expressing the flow rate in terms of the calculated profiles U(X, y) and T(x, y) and 

substitut~g the resulting expression into (2.1), we finally obtain the equation 

Here, the root (h)=~ 1 is taken. 
Problem (1.2)-(1.5) is solved up to the cross-section x,, in which (3L) = 1. 
The pressure distribution along the channel, corresponding to a definite value of its half 

length 1*, is found in the following manner. A value of the coordinate x, = I * I L*, which when 
account is taken of (l.l), is determined by the expression 

(2.3) 

in which the as yet unknown quantity pO* occurs, corresponds to the outlet cross-section of the 
channel. 

It is next assumed that, if the value of (h) determined from (2.2) is less than unity in the 
outlet cross-section of the channel, the pressure in this cross-section is equal to the external 
pressure: p* (I*) = pc* = po*p,, where p1 = &,) is the calculated value. Whereupon, by sub- 
stitut~g the value of p,: into (2.3), we obtain an equation far the coordinate of the outlet cross- 
section of the channel 

3 = fi~oP(X,>, (2.4) 

Here we have intr~uced an effective Mach number M,,, which depends on the ambient 
pressure p,* which does not occur among the parameters of problem (1.2)-(1.6). The physical 
mea~ng of the quantity MO will be explained below. 
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As follows from (2.4), a decrease in the value of p,* at constant J*, /I*, I* and To* leads to an 
increase in x, and this occurs so long as x, CX,,,. A value of (h)= 1 is attained in the outlet 
cross-section of the channel when the Mach number reaches a value M, = x,l[~(ylp(x,)]. It is 
assumed that, when M, 3 it4, (M, is a function of the Re number), critical conditions of 
“blocking” of the channel are established, under which a change in the ambient pressure has 
no effect on the flow in the channel. In this case the value x,,, corresponds to the coordinate of 
the outlet cross-section of the channel and the pressure at its centre is determined from (2.3) 

(2.5) 

Since, from the conditions of the problem, the ambient pressure is an unknown quantity, the 
pressure in the channel must be expressed in terms of p,*. When M,, s MO,,,, x, is found from 
(2.4) and the pressure distribution in the channel referred to pc*, p’(x’) =p(x)lp,, where 
x’=xlx,, is constructed on the basis of the distribution p(x) obtained from the solution of 
(1.2)-(1.6). When M,, 3 M,, it follows from (2.5) that p’(x’)=p(x)d(y)M,lx,, where 
x’=xIx,,,. Let us now obtain an estimate of the value of the mean Mach number in the outlet 
cross-section of the channel 

(M) = (U*)(yY*(T*))-M (24’) = $1 ( U*(r,y*)dy* 1 
Since the temperature across the channel varies insignificantly, the estimate 

holds. 
On the other hand, Q* = J *I*, from which, when account is taken of the relationship 

(T*)E To*, we obtain (M} z M,,pe*lp,*. Hence, when MO C MO,,,, the characteristic Mach num- 
ber MO is approximately equal to the average value of the Mach number in the outlet cross- 
section. 

3. The basic advantage of this method is therefore the possibility of determining the flow 
characteristics in a channel (the pressure distribution, for example) for different values of the 
characteristic number MO (or the ambient pressure) from the results of a single calculation 
carried out at a fmed Re number. 

The results of the calculation of the pressure distribution in a Channel, p(x), at the constant 
values To* = 300 K and Pr = 1 are shown in Fig. 2 for three values of the Reynolds number: 
Re = 0.1, 1 and 10 (curves 1,2 and 3, respectively). The values of the limiting coordinate x,,, are 
indicated by small arrows on the x-axis. 

The coordinate of the outlet cross-section x,, determined from Eq. (2.4) (the solid curves) 
and the pressure in this cross-section p, (the dashed line curves) as a function of M,, are shown 
in Fig. 3. The distributions in Fig. 2 were used in finding the value of x,. The numbering of the 
curves in Fig. 3 is the same as that in Fig. 2. 

It is seen that the value of x, increases as the Reynolds number increases. At the same time, 
the pressure at the centre of the channel p,,* =p,* lp, also increases and, consequently, the 
pressure drop in the channel increases. 

The dependences of the coordinate of the outlet cross-section under “blocking” conditions, 
x,,,, the pressure pm =p(x,,,) and the limiting value of the Mach number M,, at which these 
conditions are established are shown in Fig. 4 as a function of the Reynolds number. 

Conclusions can be drawn on the basis of the above results regarding the qualitative 
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dependences of the flow characteristics in a channel on the dimensional parameters of the 
problem, Z*, A*, J*, pe* and TO*. 
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